
International Journal of Computer Trends and Technology Volume 70 Issue 3, 19-26, March 2022

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V70I3P104 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

A Review Paper on Application of Model-Driven

Architecture in Use-Case Driven Pervasive Software

Development

Julia N. Korongo1, Samuel T. Mbugua2, Samuel M. Mbuguah3

1Department of Information Technology, School of Information Sciences, Moi University, Eldoret, Kenya.
2,3Department of Information Technology, Kibabii University, Bungoma, Kenya

Received Date: 12 February 2022

Revised Date: 01 April 2022

Accepted Date: 05 April 2022

Abstract - This article explores the Model-Driven

Architecture (MDA) approach concerning software

modelling during systems development. The evolution of

MDA is changing software development into a simpler

process with less turnaround time, faster deliverability and

greater innovation. MDA facilitates building pervasive

software systems from high-level models to descriptions of

processes known as Use Cases or Scenarios. The first

section addresses the role and the importance of software

systems architecture in building robust software systems.

The second section describes the concept of MDA, in

particular, modelling and how to apply Use Case Scenarios

using Unified Modeling Language (UML) during software

development. Finally, the paper explains the advantages and

disadvantages of the MDA and further observes the

challenges of MDA in representing the progression and

transformation of information in pervasive software

development.

Keywords - Model-Driven Architecture, Pervasive Software

Development, Software Engineering, Software Modeling,

Software Systems Architecture, Use-Case Scenarios.

I. INTRODUCTION

In a rapidly evolving world driven by digital

innovations, pervasive software systems play a critical role in

supporting personal devices, home appliances and business

applications. While designing and developing better software

systems interfaces, the architecture and infrastructure of

software systems should be optimised to meet both the user

needs and business requirements [1]. Hence, there is a need

for software architecture that makes usability and

interoperability central to other supporting infrastructures.

Studies show that one of the approaches to optimise the

development of software systems is to apply Model-Driven

Architecture (MDA) during software engineering [2], [3],

[4], [5]. On the other hand, references [6], [7] allude that the

evolution of MDA is changing software development into a

simpler process with less turnaround time, faster

deliverability and greater innovation. Therefore, as the pace

of technology continues to quicken, as observed by [1], the

demands of integrating enterprise-wide existing legacy

systems with industry 4.0 technologies and other digital

platforms such as social media and e-business systems are

thus real.

The demand for pervasive software systems has

increased, leading software engineers to devise and improve

software architectures and different techniques in the

systems development process [1], [5]. According to [8] and

[9], end-users are increasingly demanding more from

software products than ever before regarding more features,

faster runtimes and fewer software errors. Software

Engineers have devised different ways by employing new

toolsets in developing and delivering the best quality

software products. This is because software development is a

complex, elaborate and iterative process of understanding,

analysis, discovery, and design of systems that requires

techniques to increase understanding of the defined set of

stakeholders and address the systems requirements. This

means that the more complexity developers attempt to

address in terms of requirements, the more change that

occurs and the more change that occurs, the more

complexity in terms of the software pervasiveness [10], [11].

Hence, the development must involve discovering user and

business requirements and developing solutions through

collaboration by software engineering teams with their end-

users [12], [13].

II. METHODOLOGY

This study adopted a qualitative approach. In particular,

desk research was conducted to review the literature that

provided baseline information about the MDA approach. The

study further sought to explore the MDA framework in

http://www.internationaljournalssrg.org/

Julia N. Korongo et al. / IJCTT, 70(3), 19-26, 2022

20

relation to Use-Case was driven by software systems

development and adopts a descriptive strategy to review

literature from different sources, including journal articles,

textbooks, conference papers, scientific, social sites and

websites. Data presentation is in the form of analytical and

textual descriptions using tables, diagrams and content

analysis.

III. RESULTS AND DISCUSSION

A. The Role of Software Systems Architecture

Software systems architecture is the foundation that sets

up the base for designing and implementing software

systems [4], [14]. Software architecture deals with software

systems' abstraction, decomposition, composition, style, and

esthetics, as observed by [4], [15]. Reference [15] further

notes that a software architecture description can be

organised around four views and then illustrated by a few

selected Use Cases considered in the fifth view, as shown in

Fig. 1. This also involves a set of high-level decisions that

determine the structure of the software solution (parts of

software-to-be and their relationships).

Fig. 1 The 5-Views Architectures

Source: [15]

The model by [15], as shown in Fig. 1, implies that there

should be principal decisions made throughout the

development and evolution of a software system, and

decisions about the design philosophy are made early and

affect large parts of the system hard to modify later.

Throughout the process of the Software Development Life

Cycle (SDLC), many kinds of information are captured,

analysed, refined and communicated. There are three types of

approaches to software development: SDLC, Agile Approach

and Object-Oriented Systems Analysis and Design. These

involve different models such as Iterative, Waterfall,

Incremental, Rapid Application Development, and Agile

methods, among others, for applying these activities. A study

by [16] opines that the system modelling approach is key

while developing consistent pervasive systems such as those

used in the manufacturing industry to facilitate access to the

Web. Reference [16] further describes the decomposition of

a system using Objective Oriented Project Planning (OOPP)

in three dimensions of analysis: the problem, the objective

and the activity planning. Thus, [10] further argues that it is

important to use well-known solutions that are proven to

work for similar problems.

B. The Concept of Model-Driven Architecture

Model-Driven Architecture is a software design

approach launched by the Object Management Group

(OMG) in 2001 [17]. It is an open and vendor-neutral

architectural framework that leverages associated OMG

standards (and models specifically) within the SDLC across

various domains and technologies. The approach provides a

set of guidelines for structuring specifications, which are

expressed as models and are said to have partially evolved

from the Use Case Scenarios, as shown in Fig. 1. The aim is

to model first to enable developers and other stakeholders

like end-users and customers to have a complete picture of

what software is required. This entails having a complete

view of the Use Cases of the business in terms of the

processes and the interactions involved while documenting

the entire software project. According to [17], the goal of

using the MDA framework is guided by the following four

questions:

i) What does the software engineering project team

currently have in architecture modelling?

ii) What does the team want to know about business

goals and initiatives?

iii) What roadmaps or frameworks are necessary to

achieve the software engineering project?

iv) How does the team communicate the progress of the

software engineering project?

The MDA method leverages the modular architecture

throughout the software development process and is divided

into three abstract layers of modular transformation as

described by [7], [18]. These abstract layers are also

represented by [19] as an MDA framework that includes;

Computation-Independent Model (CIM), Platform-

Independent Model (PIM), and Platform-Specified Model

(PSM). Table 1 describes each of the models.

Also called Scenarios or Viewpoints, as indicated in Fig.

1, the three models shown in Table 1 may also be supported

by UML diagrams using different modelling techniques and

tools [20] in software development. The UML techniques

help to enable and facilitate the process of software

development. References [3], [21] argue that the term

'architecture' in MDA does not refer to the architecture of the

system being modelled but rather to the architecture of the

various standards and model forms that serve as the

technology basis for MDA. The importance of MDA is the

notion of model transformation, which focuses on

forwarding engineering, that is, producing code from

abstract, human elaborated modelling diagrams like class

diagrams and use case diagrams, among others. OMG has

defined a specific language for model transformation called

Query View Transformation (QVT) language [18] that

facilitates the process of forwarding engineering in

modelling software systems.

Julia N. Korongo et al. / IJCTT, 70(3), 19-26, 2022

21

Furthermore, MDA also specifies formal

transformations between the PIM and the PSM [7]. This is

achieved by adding marks to the PIM to indicate how certain

elements can be mapped onto different platforms. Many tools

produced by different vendors can exchange UML diagrams,

and the PIM-PSM transformations are becoming fully

automated [22], thus facilitating efficient software

development. Fig. 2 shows how the different components

represent the problem domain and the platform involved in

the final system method.

Fig. 2 Foundational Components of the MDA Adapted from: [22]

The components involved in MDA, as shown in Fig. 2, include:

C. The Model

There are three views; Computational Independent view

(CIV), Platform Independent View (PIV) and Platform

Specific View (PSV), that translate into three models used to

build the large-scale solutions named (1) Computational

Independent Model (CIM), in which business model does not

depend on the system model and implementation details are

not present in it; (2) Platform Independent Model (PIM), the

name indicates that it is independent of any platform or

operating system detail; and (3) Platform Specific Model

(PSM), the PIM can be transformed in multiple PSM which

is dependent on a particular platform or operating system.

Lastly, the Implementation Specific Model (ISM) specifies

all implementation details.

D. Model Transformation

As shown in Fig. 2, the different models can be

transformed through some sequential steps to develop the

system. This begins with requirements gathering

transformation to CIM, systems analysis to PIM, systems

design to PSM, and systems implementation transforms to

ISM. Models are written in a well-defined language that

comprises another model used to integrate and transform the

model called meta models.

Julia N. Korongo et al. / IJCTT, 70(3), 19-26, 2022

22

Table 1. Comparison of the three MDA Models

Model Type How and Where Applicable Example

Computation-Independent

Model

(CIM)

• Reflects system and software knowledge from

the business perspective.

• Models the system in terms of how it will

interact with its environment corresponds to

the conceptualisation perspective.

• Combines requirements and domain models

that interact with its environment.

• Represents descriptions of functionalities

while hiding the technical specifications.

• A specification for business

rules, business processes, data

vocabulary and requirements for

the software.

• For modelling specific problems.

Platform-Independent

Model (PIM)

• A model of a system that does not have any

technology-specific implementation

information.

• No change from one platform to another.

• Design model that describes the internal

structure of models without regard to the

hosting platform. A common application

concept can be extracted independently from

the platform target through PIM.

• Also allows mapping to one or more

platforms.

• A generic description of a

software system independent of

the hosting platforms.

Platform-specific Model

(PSM)

• A model of a system that has technology-

specific implementation information.

• Changes from one platform to another.

• An implementation model adds concepts from

the hosting platform to the specific hosting

platform.

• Combines the PIM model with the

specifications of a particular platform.

• Allows model to conform to a specific

platform and helps generate appropriate

source code.

• A description of the system

using, e.g. Java or Microsoft

.NET technology.

• Oracle SQL Developer Data

Modeler 21.4.2 and Oracle

APEX.

• Transformation techniques (QVT) convert PIMs that specify the operations of software systems to produce PSMs that

specify how software systems use the capabilities of the platforms to provide their operations. [20]

E. The Process of Mapping and Transformation

Mapping is a specification (or transformation of

specification) that includes rules and other information for

transforming a PIM to produce a PSM for a specific

platform. It transforms the models from one layer to another

by transforming from one abstracted layer or model to

another, then transforming from one model view to a lesser

view. The target meta-model can be tapped by adding

information to the models. The model type mapping specifies

mapping based on the types of model elements. The model

instance mapping specifies how specific model elements are

to be transformed in a particular manner using marks. At the

same time, transformation is a process of converting a PIM,

combined with other information, to produce a PSM. This

means that a transformation for a model type mapping is a

process of converting a PIM to produce a PSM by following

the mapping. At the same time, a transformation for a model

instance mapping is a process of converting a marked PIM to

produce a PSM by following the mapping. Figure 3 shows

the transformation phases in pervasive software systems

development.

Julia N. Korongo et al. / IJCTT, 70(3), 19-26, 2022

23

Fig. 3 Transformation of Models in MDA Source [22]

According to [23], two types of transformation

approaches can be used in the MDA approach for designing

an application, Model to Model (M2M) and Model to Text

(M2T), as discussed hereunder:

a) M2M

M2M transforms models from CIM to PIM or PIM to

PSM. It is an automatic generation of t target models from s

source models. Each of these models conforms to a reference

model, which can be the same for several models.

Transformation of M2Mallows having productive modular

transformation of models independent of any software

execution platform.

b) M2T

M2T is used to model the management process for

generating text from different models. It allows the

generation of codes from the entry model PSM to a

programming language related to the chosen software

development platform. The generation of the text is not

limited to codes. It varies from documents to manuals as it is

independent of the target programming language. In M2T

transformations, the text is a form of arbitrary structure and

does not conform to any meta-model.

The development of the M2M and M2T meta-models,

which initiate the modelling process, is specifically done to

reduce the complexity for software engineers, as observed by

[21]. These two models then translate the vision and need of

the software end-user concerning Use Case Scenarios in the

form of actions and interactions, which are then transformed

into output software models, a concept referred to as forward

engineering. In this case, the descriptions of the user

requirements are represented from the system from the

graphical point of view by using UMLs.

F. The Concept of Use Case Modeling

In software engineering, a model simplifies reality that

forms a description of the real problem or an abstraction that

represents and communicates what is important, devoid of

unnecessary system details. The fact Because software

systems are ubiquitous and key in the current day to day

operations [24] and because we cannot comprehend big

systems in their entirety, then modelling the real problem

helps software engineers to deal with the complexity of the

solution being developed by visualising and creating the final

software product. There are two types of data modelling:

• Strategic data modelling: this is part of the creation of an

information systems strategy that defines an overall

vision and architecture for the system; and

• Systems analysis data modelling: using logical data

models in systems development.

While modelling software systems, it is important to

describe the exchange of information among the key

components of the pervasive systems. Reference [16]

outlines these specific objectives of a flexible information

system as; management and security of information systems,

circulation of information, use of appropriate media

channels, archiving of information, analysis and effective

information processing, and characterisation of the

information therein

To achieve the target goals, from requirements analysis

to implementation of software systems, software engineers

use UML, a non-proprietary modelling language, to design

and implement the different data models. Throughout the

SDLC process, software engineers use different data models

to describe and conceptualise business entities, their

processes, and relationships. Further, the three phases of

problem-solving emanating from a problem domain to

realising a solution include conceptualisation, specification

and realisation. According to [25], different modelling

techniques are used for each of these phases to represent the

various data represented.

First, conceptual data modelling is based on the user and

systems requirements [25] or user stories (that produce a

requirements model) mainly in the context of an activity

model. This model consists of entity types, attributes,

relationships, integrity rules, and the definitions of those

objects concerning the business needs of the software

system. The product of the requirements model is then used

as the start point for the specification of the user interface

and database design modelling (that produces the analysis

model and design model) for the system.

Finally, the product of the design model is used to

realise the final product (implementation model) that

represents a solution for the software system under

development.

Julia N. Korongo et al. / IJCTT, 70(3), 19-26, 2022

24

G. Application of Unified Modeling Language

UML has a direct relationship with object-oriented

analysis and design and support the implementation of MDA

[25], [26], [27], [28]. There are four main categories of UML

illustrations with several types of diagrams, as presented in

Table 2.

Table 2. UML Diagrams and Value to Business

Dimension/

View

Category/ where

applicable

Value to Business

Process

view

• Use Case and

Activity

Diagrams

• Requirements

Analysis

• The flexibility of

showing Use Case

Scenarios

• Understanding and

communication

Logical

view

• Class Diagrams

• Designing

Software

• Integration of

different Use Case

Scenarios in the

form of classes and

objects

• Inheritance and

reusability

Dynamic

view
• Behavioural

Diagrams

• Software

Implementation

• Interoperability of

different Use Cases

• Testing, integration

and simulation

Deployment

view
• Deployment

Diagrams

• Software

Implementation

and deployment

• Portability and

compatibility of Use

Case Scenarios with

hardware, network

components

Use Case

view
• All categories

of diagrams are

applicable

• The content drives

the development of

other views using

different Use Case

Scenarios.

UML is a collection of graphical notations that object

methods use to express the designs of systems. It is mainly

used for visualising, specifying, constructing and

documenting the artefacts in the development of software

systems. Software developers apply UML in all SDLC

phases while developing pervasive software systems of

several different kinds. This includes primarily intensive

software systems, database systems and business processes.

UML tools have evolved to generate program language code,

referred to as forwarding engineering from UML diagrams to

support Use Cases and implement specific applications. For

each dimension, as shown in Table 2, there are a number of

diagrams that denote a view of the software system's model

(4+1 view as provided by Kruchen), and these can be

described as Process view, Deployment view, Logical view,

Dynamic view + use Case view as shown in Fig. 1. The

diagram shows the behaviour of a system from different

perspectives and how businesses can derive value from using

UML.

A demonstration of implementing the descriptions in

Table 2 is drawn from the application of Oracle SQL

Developer Data Modeler 21.4.2 and Oracle APEX [29], [30],

where data modelling occurs at three levels:

a) Physical data model

Physical data model is a physical model or a schema or

framework for how data is physically stored in a database (in

the form of SQL codes generated using Oracle APEX).

b) Logical data model

Sits between the physical and conceptual levels and

allows for the logical representation of data to be separate

from its physical storage (this can be expressed using Oracle

SQL schemas).

c) Conceptual data model

This model identifies the high-level user view of data

(this can be expressed using a Class Diagram using a Data

Modeler).

From the application examples, when we map a PIM to a

particular platform regarding the Krutchen's 4+1 views, we

produce artefacts native to that platform (diagrams, codes,

schemas, deployment descriptors, use cases) but also a

platform-specific UML model [31]. We do this because the

UML model can express the semantics of the platform-

specific solution as described later using the examples from

Oracle platforms. The Model-Driven method will focus on

the graphical part by initiating a simplified design model. It

transforms Use Cases into graphical and visual components

to help developers construct an application visually. It

exploits the abstraction model of the software and later

converts the same into a working software or application.

Another example is where software developers create

web application architectures (for example, a Website) using

the Model-View-Controller (MVC) pattern, where

applications are classified into four groups, namely:

1) Portals and Web Applications

MDA can easily build different types of web

applications for both front-end and back-end systems.

2) Mobile Devices Applications

Software developers can build and customise front-end

modules for smartphones and tablets.

3) Back Office Applications

This allows software engineers to improve internal

enterprise operations by building the back-end applications

that use back-office modules only that provide functionality

for administration and internal use of business data.

Julia N. Korongo et al. / IJCTT, 70(3), 19-26, 2022

25

4) Graphical User Interfaces (GUIs)

Graphic user interface that facilitates the first point of

contact between the user and the system can leverage such a

method to induce a visual approach to designing and

achieving better application UIs.

H. Advantages of MDA in Pervasive Software Systems

Development

a) Flexibility

MDA can derive or generate code from a stable model

as the underlying infrastructure shifts over time hence,

reduce the need for hand programming.

b) Return on Investment

The reuse of requirements, inheritance of objects and

classes, and application and domain models across the

software lifespan enhances return on investment.

c) Increased Productivity

in the design and development phases of software projects,

the PIM-PSM conceptual separation can potentially provide

a better division of tasks between domain and platform

experts, facilitating the principle of Separation of Concerns

in software engineering.

I. Disadvantages of MDA in Pervasive Software Systems

Development

a) Transformation of PIM

PIM is not transformed into PSM in some cases, but it is

instead used as a base for generating the source code.

b) Abstraction of PSM

The level of abstraction provided by the PIM is

abandoned in favour of PSM in some cases that are then

directly interpreted by a compiler that translates them into

code.

c) Dimension of Instability

The relatively stable PIM protects software developers

when shifting enterprise boundaries. The software

developer’s challenge is how to preserve the development

investment made in new components when an enterprise

boundary shift and the underlying technology needs to

change [10], [12], [32].

J. Challenges of MDA

As pointed out by [4], software abstraction has shown to

be particularly effective for reasoning about the software's

structure, constituent elements and the relationships among

them. There is no final data model for a business or user

application because of dynamic and heterogeneous business

environments that should also match the range of timing to

currently used powerful ubiquitous computing elements [11]

to handle various pervasive software systems attributes. For

instance, a study by [24] indicates that internal software

attributes such as cohesion, coupling, and complexities can

predict attack ability metrics related to external software

attributes in the architectural design software system. Hence,

a data model should be considered a living document subject

to change in response to the change in business. It is also

important to note that the data models will require to be

edited, expanded, and retrieved over time; thus, a repository

for such models is vital for reuse. This implies that one can

incorporate MDA with the Repository Software Systems

Architecture when developing pervasive software systems.

Data models can be centralised and accessed frequently by

other components to access or modify data and the

knowledge base to avoid redundancy and model

inconsistencies.

IV. CONCLUSION

The development process of pervasive software systems

is a complex task that can be made more efficient by using a

simplified and flexible approach like MDA. The MDA

broadly supports different types of application domains and

technology platforms. The idea behind the MDA process is

to begin designing the pervasive software systems by

assimilating them to a non-technical model that is instead

focused on representing its domain structure and functional

behaviour, namely, PIM. This is followed by transformation

to more technical models, specific for the implementation of

the system modelled in different platforms, namely, PSM.

Currently, different UML tools support forward engineering

from different Use Case Scenarios. However, the challenge

of MDA arises due to the dynamic and heterogeneous nature

of the requirements in the business environments that should

also match the range of pervasiveness in modern computing.

Through UML's modelling technique, MDA has

empowered developers to address change and complexity

and leverage change and complexity for a competitive

advantage by capturing knowledge encoded in models. This

approach leads to long-term pervasive software systems

architectures that support different metrics such as flexibility

of implementations, integration, maintenance, testing, attack

ability and simulation, and portability, interoperability and

reusability. The observation from this paper is that software

abstraction in the form of data models represents information

areas of interest referred to as Scenarios or Viewpoints and

is, therefore, progressive and transformative. Hence, there is

a need to improve methods and techniques or devise new

methods and techniques to meet the new pervasive software

engineering challenges. The software architecture

development process is thus important to deal with both the

internal and external attributes of pervasive software

systems.

ACKNOWLEDGMENT

The authors would like to thank the following reviewers

whose comments have improved this paper:

Julia N. Korongo et al. / IJCTT, 70(3), 19-26, 2022

26

REFERENCES
[1] M.V. Steen, and A.S. Tanenbaum, Distributed Systems, 3rd ed.

CreateSpace Independent Publishing Platform, (2017).

[2] DS. Frankel, Model Driven Architecture: Applying MDA to

Enterprise Computing. John Wiley & Sons, (2015).

[3] DS. Frankel, and J. Parodi (eds), The MDA Journal: Model Driven

Architecture Straight From The Masters. Meghan Kiffer Pr, (2015).

[4] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek, and Y.

Cai, A Study on the Role of Software Architecture in the Evolution

and Quality of Software. Conference: 2015 IEEE/ACM 12th

Working Conference on Mining Software Repositories (MSR),

(2015). Available:

https://www.researchgate.net/publication/308735174

[5] A. Soylu, and P. De Causmaecker, Merging Model-Driven and

Ontology-Driven System Development Approaches Pervasive

Computing Perspective, in Proc 24th Intl Symposium on Computer

and Information Sciences. (2009) 730–735.

[6] A. Noureen, A. Amjad and F. Azam, Model Driven Architecture

Issues, Challenges and Future Directions, Journal of Software, 11 (9)

(2016) 924-933. Available: https://doi.10.17706/jsw.11.9.924-933

[7] M. de Miguel, J. Jourdan, S. Salicki, Practical Experiences in MDA

Application. In: J.M. Jézéquel, H. Hussmann, S. Cook, (eds)

≪UML≫ 2002 — The Unified Modeling Language. UML 2002.

Lecture Notes in Computer Science, vol. 2460. Springer, Berlin,

Heidelberg. [Online] Available: https://doi.org/10.1007/3-540-45800-

X_11

[8] I. Englander, The Architecture of Computer Hardware, Systems

Software and Networking: An Information Technology Approach, 5th

ed. Wiley. (2014).

[9] G.D. Vicente, M.C.l. Juan, B.C.P. García-Bustelo and, O.S. Martínez,

Progressions and Innovations in Model-Driven Software

Engineering. Eds. Portland: Books New Inc. (2013).

[10] R.S. Sangwan, Software and Systems Architecture in Action.

Auerbach Publications. (2014).

[11] F. Oquendo, Software Architecture Challenges and Emerging

Research in Software-Intensive Systems-of-Systems, in

Tekinerdogan B., Zdun U., Babar A. (eds) Software Architecture.

ECSA. Lecture Notes in Computer Science, vol. 9839. Springer,

Cham. (2016).

[12] N. Rozanski and E. Woods, Software Systems Architecture: Working

With Stakeholders Using Viewpoints and Perspectives, 2nd ed.

Addison-Wesley Professional. (2011).

[13] L. Bass, P. Clements and, R. Kazman, Software Architecture in

Practice (SEI n Series in Software Engineering), 3rd ed. Addison-

Wesley Professional. (2012).

[14] K. Smolander, Software Architecture Design in Information Systems

Development: A Method Engineering View, (2009). [Online].

Available:https://www.researchgate.net/publication/2401790_

Software_Architecture_Design_in_Information_Systems_Developme

nt_A_Method_Engineering_View

[15] P. Kruchten, Architectural Blueprints – The “4+1” View Model of

Software Architecture. IEEE Software, 12(6) (1995) 42-50.

[16] M. F. Karoui and M. N. Lakhoua, Information Organization of

a Flexible Manufacturing based on System Modeling

Approach. SSRG - International Journal of Mobile Computing

and Application (IJMCA). 7(1) (2020) 1-5.

Available: https://doi.org/10.14445/23939141/IJMCAV7I1P101

[17] R. Soley and the OMG Staff Strategy Group, Model Driven

Architecture. Object Management Group White Paper, (2001).

[Online]. Available:

https://www.omg.org/mda/mda_files/model_driven _architecture.htm

[18] Q. Betari, S. Filali, A. Azzaoui and, M.A. Boubnad, Applying a

Model-Driven Architecture Approach: Transforming CIM to PIM

Using UML. International Journal of Online and Biomedical

Engineering (iJOE), 14(9) (2018) 170-181. Available:

https://onlinejour.journals.publicknowledgeproject.org/index.php/i-

joe/article/view/9137

[19] A. Kleppe, MDA Explained, The Model Driven Architecture: Practice

and Promise. Addison-Wesley, (2003).

[20] J.M. Vara, B. Vela, V.A. Bollati and, E. Marcos, Supporting Model-

Driven Development of Object-Relational Database Schemas: A Case

Study. In: Paige R.F. (eds) Theory and Practice of Model

Transformations. ICMT. Lecture Notes in Computer Science,

Springer, Berlin, Heidelberg, 5563 (2009). [Online]. Available:

https://doi.org/10.1007/978-3-642-02408-5_13

[21] C. Raistrick, Model Driven Architecture with Executable UML.

Cambridge University Press,(2004).

[22] Y. Rhazali, A. El Hachimi, I. Chana, M. Lahmer and, A. Rhattoy,

Automate Model Transformation From CIM to PIM up to PSM in

Model-Driven Architecture. In Gupta, B. B. (Ed.), Modern Principles,

Practices, and Algorithms for Cloud Security, (2020) 262-283.. IGI

Global. Available: http://doi:10.4018/978-1-7998-1082-7.ch013

[23] A.W. Brown and J. Conallen, An Introduction to Model Driven

Architecture (MDA) Part II: Lessons from the design and use of an

MDA toolkit level, (2005). [Online] Available:

https://www.ibm.com/developerworks/rational/library/content/Rationa

lEdge/apr05/brown

[24] S. Mbuguah and F. Wabwoba, Attack ability Metrics Model for

Secure Service-Oriented Architecture. Lambert Academic Publishing.

(2014).

[25] A. D. Shinde, Use Case Modeling for requirement specifications,

Seventh Sense Research Group (SSRG) - International Journal of

Computer Trends and Technology (IJCTT), 54(1) (2017) 30-34.

Available: https://ijcttjournal.org/archives/ijctt-v54p107

[26] (2013) J. Cabot, Modeling Languages. [Online].

Available: https://modeling-languages.com/anybody-using-both-mda-

platform-independent-and-platform-specific-models/

[27] M. Brambilla, J. Cabot and M. Wimmer, Model-Driven Software

Engineering in Practice, foreword by Richard Soley (OMG Chairman)

in Synthesis Lectures on Software Engineering #1. Morgan &

Claypool, USA , (2012). Available: http://www.mdse-book.com

[28] C. Francis, P. Wright, J. Carter and I. Wilkie, Model Driven

Architecture with Executable UML, 13–9 [4]. (2004).

[29] (2022) The Oracle APEX Website. [Online] Available:

https://oracle.github.io/learning-library/developer-library/apex/low-

code-development/

[30] The Oracle Academy Website, (2022). [Online]. Available:

https://www.oracle.com/tools/downloads/sql-data-modeler-

downloads.html

[31] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.

Merson, R. Nord and, J. Stafford, Documenting Software

Architectures: Views and Beyond, 2nd ed. Addison-Wesley

Professional, (2010).

[32] R. Ramanathan and R.K. Kirtana, Handbook of Research on

Architectural Trends in Service-Driven Computing, IGI Global,

(2014).

